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We prove a general result about the behaviour of minimizing sequences for nonlocal shape functionals sat-
isfying suitable structural assumptions. Typical examples include functions of the eigenvalues of the frac-
tional Laplacian under homogeneous Dirichlet boundary conditions. Exploiting a nonlocal version of Lions’
concentration-compactness principle, we prove that either an optimal shape exists, or there exists a minimizing
sequence consisting of two “pieces” whose mutual distance tends to infinity. Our work is inspired by similar
results obtained by Bucur in the local case.

Copyright line will be provided by the publisher

1 Introduction

A significant task in Shape Optimization consists in proving existence of minimizing sets, in a suitable class, for
shape functionals of the kind

Ω 7→ J(Ω) = F (λ1(Ω), ..., λm(Ω)),

where m ∈ N∗, Ω ⊂ RN , and λ1(Ω), ..., λm(Ω) are eigenvalues of some differential operator. In the case of
the Laplacian under Dirichlet boundary conditions, and J(Ω) = λk(Ω), existence of optimal shapes among all
measurable sets with prescribed Lebesgue measure has been a challenging open problem for a long time. Apart
from the simpler cases k = 1 and k = 2, where the Faber-Krahn inequality implies that the optimal shape is a ball
(for k = 1) or the disjoint union of two equal balls (for k = 2), for the general case existence in the class of quasi-
open sets has been proven only recently by Bucur in [8] and by Mazzoleni and Pratelli in [22] independently. It
is still an open problem to identify the optimal shapes for k ≥ 3, although numerical simulations support some
conjectures.

When the differential operator under consideration is the fractional Laplacian, defined as

(−∆)su(x) := Cs,N lim
ε→0

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy,

where s ∈ (0, 1) and Cs,N is a normalization constant, the situation is quite different. While the ball minimizes
again the first eigenvalue under a volume constraint, the problem

min{λ2(Ω) |Ω ⊂ RN , |Ω| = c}, (1)

where c > 0, and |Ω| is the Lebesgue measure of Ω, does not have a solution. Indeed, it was proven by Brasco
and the first author [5] that, for every admissible set Ω,

λ2(Ω) > λ1(B̃),
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2 E. Parini and A. Salort: Compactness and dichotomy in nonlocal shape optimization

where B̃ is a ball of volume c
2 , and that a minimizing sequence {Ωn}n∈N such that λ2(Ωn) → λ1(B̃) is given

by the union of two disjoint balls of volume c
2 , such that their mutual distance tends to infinity. This means that,

in the nonlocal case, a general existence result as in [8] or [22] can not hold true. On the other hand, if one
restricts the minimization to quasi-open sets which are contained in a fixed open set D ⊂ RN , a generalization
of the existence result by Buttazzo and Dal Maso [10] holds true, as shown by Fernández Bonder, Ritorto and the
second author in [16].

Inspired by the results obtained in [7] by Bucur, in this paper we prove that, in the case of the fractional
Laplacian, for a minimizing sequence only two situations can occur: compactness, which implies, under some
assumptions, existence of an optimal shape; or dichotomy, which means that the sequence essentially behaves
as the union of two disconnected sets, whose mutual distance tends to infinity, as in Problem (1). To prove the
result, we make use of a nonlocal version of the celebrated concentration-compactness principle of Lions [21],
which we apply to the sequence of torsion functions wΩn , where {Ωn}n∈N is a minimizing sequence for the
shape functional under consideration. We recall that wΩn is defined as the weak solution of the problem{

(−∆)swΩn = 1 in Ωn,
wΩn = 0 in RN \ Ωn.

(2)

In order to introduce our main results, we recall that a sequence {Ωn}n∈N of s-quasi-open sets of uniformly
bounded Lebesgue measure is said to γ-converge to the s-quasi-open set Ω if the solutions wΩn of (2) strongly
converge in L2(RN ) to the solution wΩ ∈ Hs

0(Ω) of the problem{
(−∆)swΩ = 1 in Ω,

wΩ = 0 in RN \ Ω

(see Section 2 for precise definitions of s-quasi-open sets). Moreover, we say that a sequence {Ωn}n∈N of s-
quasi-open sets of uniformly bounded Lebesgue measure weakly γ-converges to the s-quasi-open set Ω if the
solutions wΩn of (2) converge weakly inHs(RN ), and strongly in L2(RN ), to a function w ∈ Hs(RN ) such that
Ω = {w > 0}. Finally, for a given s-quasi-open set Ω ⊂ RN of finite measure, we denote by RΩ the resolvent
operator of (−∆)s, which is defined as the function RΩ : L2(RN )→ L2(RN ) such that RΩ(f) = u, where u is
the weak solution of{

(−∆)su = f in Ω,
u = 0 in RN \ Ω.

We can now state our first main result, whose proof follows the ideas of [7].
Theorem 1.1 Let {Ωn}n∈N be a sequence of s-quasi-open sets of uniformly bounded measure. Then there

exists a subsequence, still denoted by the same index, such that one of the following situations occurs:

(i) Compactness: there exists a (possibly empty) s-quasi-open set Ω, and a sequence {yn}n∈N ⊂ RN , such that
yn + Ωn weakly γ-converges to Ω as n→ +∞.

(ii) Dichotomy: there exists a sequence of subsets Ω̃n ⊂ Ωn such that

‖RΩn −RΩ̃n
‖L(L2(RN )) → 0, Ω̃n = Ω1

n ∪ Ω2
n,

where dist(Ω1
n,Ω

2
n)→ +∞ and lim infn→+∞ |Ωin| > 0 for i = 1, 2.

Theorem 1.1 gives, as a consequence, an existence result for optimal shapes for minimization problems, when
the shape functional satisfies some structural assumptions.

Theorem 1.2 Let

A(RN ) :=
{

Ω ⊂ RN |Ω s-quasi-open
}

and let J : A(RN )→ (−∞,+∞] be a shape functional satisfying the following assumptions:

(i) J is lower semicontinuous with respect to γ-convergence;
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(ii) J is decreasing with respect to set inclusion: if Ω1, Ω2 ∈ A(RN ), Ω1 ⊂ Ω2, then J(Ω2) ≤ J(Ω1);

(iii) J is invariant by translations;

(iv) J is bounded from below.

Let c > 0, and define

m := inf{J(Ω) |Ω ∈ A(RN ), |Ω| = c}. (3)

Then, one of the following situations occurs:

(i) Existence of an optimal shape: there exists a s-quasi-open set Ω̂ ∈ A(RN ) such that |Ω̂| = c and J(Ω̂) = m.

(ii) Dichotomy: there exists a minimizing sequence {Ωn}n∈N with |Ωn| = c for every n ∈ N, such that Ωn =
Ω1
n ∪ Ω2

n, where Ω1
n, Ω2

n are such that dist(Ω1
n,Ω

2
n) → +∞, lim infn→+∞ |Ωin| > 0 for i = 1, 2, and

J(Ωn)→ m as n→ +∞.

Theorem 1.2 applies in particular to spectral functionals of the kind

J(Ω) := F (λ1(Ω), ..., λk(Ω)),

where k ∈ N, λj(Ω) is the j−th eigenvalue of the Dirichlet fractional Laplacian, and F : Rk → R ∪ {+∞} is a
functional which is lower semicontinuous and nondecreasing in each variable.

In the local case, existence of an optimal shape and the dichotomy situation can occur at the same time.
Indeed, as we have pointed out, the classical Hong-Krahn-Szego inequality asserts that among all domains of
fixed volume, the disjoint union of two equal balls has the smallest second eigenvalue. However, due to the
nonlocal effects of the fractional Laplacian, the mutual position of two connected components has influence over
the second eigenvalue, implying nonexistence of an optimal shape. Therefore it makes sense to ask whether
existence of an optimal shape and dichotomy are two mutually exclusive situations in the nonlocal case. Up to
our knowledge, this remains an open question.

The manuscript is organized as follows. In section 2 we introduce some preliminary definitions and notation.
Section 3 deals with the concentration-compactness principle in the fractional setting. In Section 4 we define the
notion of γ- and weak γ-convergence of sets as well as some related useful result, and finally in Sections 5 and 6
we provide a proof of our main results.

2 Definitions and preliminary results

We begin this section with some definitions.

2.1 Fractional Sobolev spaces and s-capacity of sets

For s ∈ (0, 1), the fractional Sobolev space Hs(RN ) is defined as

Hs(RN ) :=
{
u ∈ L2(RN ) | [u]Hs(RN ) < +∞

}
,

endowed with the norm ‖ · ‖Hs(RN ) defined by

‖u‖Hs(RN ) :=
(
‖u‖2L2(RN ) + [u]2Hs(RN )

) 1
2

,

where [·]Hs(RN ) is the Gagliardo seminorm defined as

[u]Hs(RN ) :=

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy

) 1
2

.
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The Gagliardo seminorm of a function u ∈ Hs(RN ) can also be expressed in terms of its Fourier transform Fu
as

[u]2Hs(RN ) =
2

Cs,N

∫
RN
|ξ|2s|Fu(ξ)|2 dξ,

where Cs,N is the normalization constant in the definition of (−∆)s, given by

Cs,N =

(∫
RN

1− cos ζ1
|ζ|N+2s

dζ

)−1

(see [12, Proposition 3.4]). Given a measurable set Ω ⊂ RN , for any s ∈ (0, 1) we define the s-capacity of Ω as

caps(Ω) = inf
{

[u]2Hs(RN ) : u ∈ Hs(RN ), u ≥ 1 a.e. on a neighborhood of Ω
}
.

and the s-capacity of Ω ⊂ Ω′ relative to Ω′ as

caps(Ω; Ω′) = inf
{

[u]2Hs(RN ) : u ∈ Hs
0(Ω′), u ≥ 1 a.e. on a neighborhood of Ω

}
.

A function realizing the infimum in caps(Ω) (resp. caps(A,Ω)) is called the capacitary potential of Ω (resp. of
A with respect to Ω).

We say that a property holds s-quasi-everywhere if it holds up to a set of null s-capacity. A measurable subset
Ω ⊂ RN is a s-quasi-open set if there exists a decreasing sequence {ωn}n∈N of open subsets of RN such that
caps(ωn)→ 0, as n→ +∞, and Ω ∪ ωn is open.

A function u ∈ Hs(RN ) is said to be s-quasi continuous if for every ε > 0 there exists an open set G ⊂ RN
such that caps(G) < ε and u|RN\G is continuous. It is well-known that caps is a Choquet capacity on RN [1,
Section 2.2] and for every u ∈ Hs(RN ) there exists a unique s-quasi continuous function ũ : RN → R such that
ũ = u s-quasi-everywhere on RN . Therefore we will always consider, without loss of generality, that a function
u ∈ Hs(RN ) coincides with its s-quasi continuous representative. If u : RN → R is s-quasi continuous, then
every superlevel set {u > t} is s-quasi-open.

For a generic measurable set Ω ⊂ RN , we define the fractional Sobolev space Hs
0(Ω) as

Hs
0(Ω) = {u ∈ Hs(RN ) : u = 0 s-q.e. on RN \ Ω}.

The space Hs
0(Ω) turns out to be a closed subspace of Hs(RN ).

The following Poincaré’s inequality holds for measurable sets of finite measure.
Proposition 2.1 Let Ω ⊂ RN be a measurable set of finite Lebesgue measure. Then, there exists a constant

C = C(s,N) > 0 such that, for every u ∈ Hs
0(Ω),

‖u‖L2(Ω) ≤ C|Ω|
2s
N [u]Hs(RN ).

P r o o f. Let u be a function in Hs
0(Ω) and consider the ball Ω∗ such that |Ω∗| = |Ω|. Let v := |u|∗ be the

Schwarz symmetrization of |u|, as defined in [19, Definition 1.3.1]. By [2, Theorem 9.2], v ∈ Hs
0(Ω∗), and

[v]Hs(RN ) ≤ [|u|]Hs(RN ) ≤ [u]Hs(RN ).

By [4, Lemma 2.4], there exists C ′ = C ′(s,N, |Ω|) > 0 such that

‖v‖L2(Ω∗) ≤ C ′[v]Hs(RN ).

By a scaling argument, it is possible to show the existence of C = C(s,N) > 0 such that

‖v‖L2(Ω∗) ≤ C|Ω∗|
2s
N [v]Hs(RN ).

Since symmetrizations preserve the L2-norm,

‖u‖L2(Ω) = ‖v‖L2(Ω∗) ≤ C|Ω∗|
2s
N [v]Hs(RN ) ≤ C|Ω|

2s
N [u]Hs(RN ),

and the claim follows.
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The previous proposition leads to a useful compactness result.
Proposition 2.2 Let Ω ⊂ RN be a measurable set of finite Lebesgue measure. Then, for every bounded

sequence {un}n∈N inHs
0(Ω), there exists a subsequence {unk}k∈N and a function u ∈ Hs

0(Ω) such that unk → u
in L2(Ω).

P r o o f. The proof can be performed as in [4, Theorem 2.7], using the Poincaré inequality stated in Proposition
2.1.

Proposition 2.3 Let {un}n∈N be a sequence in Hs(RN ) such that un ⇀ u weakly in Hs(RN ) as n→ +∞.
Then, for every function ϕ ∈W 1,∞(RN ), it holds that ϕun ∈ Hs(RN ) for every n ∈ N, and ϕun ⇀ ϕu weakly
in Hs(RN ) as n→ +∞.

P r o o f. The sequence {un}n∈N is uniformly bounded inHs(RN ). Moreover, since the embeddingHs(Br) ↪→
L2(Br) is compact for every r > 0, it follows that un → u strongly in L2(Br) for every r > 0. Arguing as
in [12, Lemma 5.3], we have that the sequence {ϕun}n∈N is also bounded in Hs(RN ). Therefore, every subse-
quence {ϕunk} admits a subsequence {ϕunkj } which converges weakly in Hs(RN ), and almost everywhere in
RN , to some v ∈ Hs(RN ). But unkj must converge to u almost everywhere in RN . Therefore, ϕunkj → ϕu

a.e. in RN , and thus v = ϕu. Hence all the sequence ϕun converges weakly in Hs(RN ) to ϕu.

For an s-quasi-open set Ω of finite Lebesgue measure and f ∈ L2(RN ), the weak solution u of{
(−∆)su = f in Ω,

u = 0 in RN \ Ω,
(4)

is defined as the function u ∈ Hs
0(Ω) satisfying∫

RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy =

∫
Ω

f(x)v(x) dx for all v ∈ Hs(Ω).

Similarly, u ∈ Hs
0(Ω) is a weak sub-solution (resp. super-solution) of (4) if∫

RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy ≤ (resp. ≥)

∫
Ω

f(x)v(x) dx for all v ∈ Hs(Ω), v ≥ 0 in Ω.

It is easy to verify that u ∈ Hs
0(Ω) is a weak solution if and only if it is a weak sub- and super-solution.

Proposition 2.4 Let Ω be a measurable set of finite Lebesgue measure. Then, if f ∈ L2(RN ) satisfies f ≥ 0
in Ω, then the weak solution u ∈ Hs

0(Ω) of (4) satisfies u ≥ 0 in Ω.

P r o o f. Let u+ := max{u, 0}, u− := max{−u, 0} be the positive and the negative parts of u respectively.
It holds u+, u− ∈ Hs

0(Ω). Testing the equation with u− we have

0 ≤
∫

Ω

fu−

=

∫
RN

∫
RN

(u(x)− u(y))(u−(x)− u−(y))

|x− y|N+2s
dx dy

=

∫
RN

∫
RN

((u+(x)− u+(y))− (u−(x)− u−(y)))(u−(x)− u−(y))

|x− y|N+2s
dx dy

= −2

∫
RN

∫
RN

u+(x)u−(y)

|x− y|N+2s
dx dy −

∫
RN

∫
RN

(u−(x)− u−(y))2

|x− y|N+2s
dx dy ≤ 0

which implies u− ≡ 0 and hence u ≥ 0 in Ω.

Proposition 2.5 Let Ω, Ω′ ⊂ RN be two measurable sets of finite Lebesgue measure, satisfying Ω ⊂ Ω′.
Then, the function wΩ ∈ Hs

0(Ω), extended by zero in Ω′ \ Ω, satisfies

(−∆)swΩ ≤ 1 in Ω′.
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P r o o f. Let us define the convex set K ⊂ Hs
0(Ω′) as

K := {u ∈ Hs
0(Ω′) |u ≤ 0 s− q.e. on Ω′ \ Ω}.

Let uΩ ∈ K be the unique minimizer on K of the functional

v 7→ 1

2
[v]2Hs(RN ) −

∫
Ω′
v.

It is easy to verify that

(−∆)suΩ ≤ 1 in Ω′ (5)

and

(−∆)suΩ = 1 in Ω. (6)

uΩ satisfies the variational inequality∫
RN

∫
RN

[uΩ(x)− uΩ(y)][(v − uΩ)(x)− (v − uΩ)(y)]

|x− y|N+2s
dx dy ≥

∫
Ω′

(v − uΩ) for every v ∈ K.

Testing the variational inequality with v = u+
Ω ∈ K (note that u+

Ω = 0 in Ω′ \ Ω) we obtain

0 ≥ −
∫
RN

∫
RN

|u−Ω(x)− u−Ω(y)|2

|x− y|N+2s
dx dy ≥

∫
RN

∫
RN

[uΩ(x)− uΩ(y)][u−Ω(x)− u−Ω(y)]

|x− y|N+2s
dx dy ≥

∫
Ω′
u−Ω

so that u−Ω ≡ 0, which implies uΩ = 0 on Ω′ \ Ω, and hence uΩ ∈ Hs
0(Ω). Equation (6) then implies uΩ = wΩ,

so that, from (5),

(−∆)swΩ ≤ 1 in Ω′.

The following useful propositions can be proven as in [18, Proposition 3.3.44].
Proposition 2.6 Let A ⊂ RN be a measurable set. There exists a unique s-quasi-open set Ω ⊂ RN such that

Hs
0(A) = Hs

0(Ω).

P r o o f. Since Hs
0(A) is separable, there exists a dense sequence {un}n∈N ⊂ Hs

0(A). Let us define Ω :=
∪n∈N{ũn 6= 0}, where ũn is the s-quasi continuous representative of un. Then Ω is s-quasi-open, as a countable
union of s-quasi-open sets. Moreover, since {ũn 6= 0} ⊂ A s-q.e. for every n ∈ N, it holds Ω ⊂ A and
hence Hs

0(Ω) ⊂ Hs
0(A). Conversely, every u ∈ Hs

0(A) is the Hs and s-q.e. limit of a subsequence {unk}k∈N.
Hence, {ũ 6= 0} ⊂ {ũnk 6= 0} ⊂ Ω s-q.e. for every k ∈ N, which implies Hs

0(A) ⊂ Hs
0(Ω). In conclusion,

Hs
0(A) = Hs

0(Ω).
To prove uniqueness, we will prove that, for any Ω1, Ω2 s-quasi-open sets, Hs

0(Ω1) ⊂ Hs
0(Ω2) implies

Ω1 ⊂ Ω2 s-q.e. Indeed, suppose by contradiction that caps(Ω1 \ Ω2) > 0. There exists a ball B such that
caps(B ∩ (Ω1 \ Ω2)) > 0. Let {ωn}n∈N be a non-increasing sequence of open sets contained in B such that
caps(ωn) → 0 as n → +∞, and (B ∩ Ω1) ∪ ωn is an open set. Let uωn be the capacitary potential of ωn in B.
We fix n0 ∈ N sufficiently large, such that caps(B ∩ {uωn0

< 1} ∩ (Ω1 \Ω2)) > 0. Let Km ⊂ (B ∩Ω1) ∪ ωn0

be an increasing sequence of compact sets exhausting (B ∩ Ω1) ∪ ωn0 , and let uKm be the capacitary potential
of Km with respect to (B ∩ Ω1) ∪ ωn0 . For m large enough, the function uKm(1 − uωn0

) belongs to Hs
0(Ω1),

but not to Hs
0(Ω2), a contradiction. Therefore, Ω1 ⊂ Ω2 s-q.e.

We denote by RΩ the resolvent operator of the fractional Laplacian with Dirichlet boundary conditions, that
is, RΩ : L2(RN ) → L2(RN ) and RΩ(f) = u, where u is the weak solution of (4). In particular, wΩ = RΩ(1).
It is easy to check that RΩ defines a continuous, compact, self-adjoint linear operator from L2(RN ) in itself. We
denote by ‖ · ‖L(L2(RN )) the corresponding operator norm. The resolvent operator is positivity preserving, which
means that f ≥ 0 implies RΩ(f) ≥ 0, as a consequence of the weak maximum principle.
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Proposition 2.7 Let Ω ⊂ RN be a s-quasi-open set. Then, the set Z(Ω) := {RΩ(f) ∈ Hs
0(Ω) | f ∈

C∞c (RN )} is dense in Hs
0(Ω).

P r o o f. Let u ∈ Hs
0(Ω), and g := (−∆)su ∈ H−s(RN ) its fractional Laplacian, defined in distributional

sense. Then, u = RΩ(g). By density of C∞c (RN ) in H−s(RN ) (see [23, Lemma 15.10]), there exists a sequence
{gn}n∈N ⊂ C∞c (Ω) converging in H−s(RN ) to g. Then, RΩ(gn) ∈ Z(Ω) for every n ∈ N, and RΩ(gn) →
RΩ(g) = u in Hs

0(Ω) as n→ +∞.

Proposition 2.8 Let Ω ⊂ RN be a s-quasi-open set. Then, Ω = {wΩ > 0} s-quasi-everywhere.

P r o o f. By definition, {wΩ > 0} ⊂ Ω up to a set of null capacity. Let u ∈ Hs
0(Ω). By Proposition 2.7,

there exists a sequence {un}n∈N ⊂ W such that un = RΩ(gn) with gn ∈ C∞c (RN ), and un → u in Hs
0(Ω).

By the weak maximum principle, |un| ≤ ‖gn‖∞wΩ in Ω. Therefore, un(x) = 0 for every n ∈ N s-q.e. on
RN \ {wΩ > 0}. Passing to the limit, we obtain that u ∈ Hs

0({wΩ > 0}). Therefore, Hs
0(Ω) = Hs

0({wΩ > 0}),
and by Proposition 2.6 we obtain the claim.

Given an s-quasi-open set Ω, we say that λ is an eigenvalue of the fractional Laplacian if there exists a
nontrivial function u ∈ Hs

0(Ω), called eigenfunction, which is a weak solution of{
(−∆)su = λu in Ω,

u = 0 in RN \ Ω.
(7)

By linear operator theory, for every s-quasi-open set Ω ⊂ RN of finite Lebesgue measure there exists a sequence
{λk(Ω)}k∈N of eigenvalues of the fractional Laplacian, satisfying

0 < λ1(Ω) < λ2(Ω) ≤ · · · ≤ λk(Ω)→ +∞ as k → +∞.

The first eigenvalue λ1(Ω) is characterized as

λ1(Ω) = inf
u∈Hs0 (Ω)\{0}

[u]2Hs(RN )

‖u‖2
L2(RN )

and the associated first eigenfunction is unique (up to multiplicative constant) and strictly positive (or negative)
in Ω.

Eigenfunctions satisfy the following regularity property.

Proposition 2.9 Let Ω ⊂ RN be a s-quasi-open set of finite Lebesgue measure, and let u ∈ Hs
0(Ω) be an

eigenfunction of the fractional Laplacian. Then, u ∈ L∞(Ω).

P r o o f. The proof can be performed as in [17, Theorem 3.2] taking into account Theorems 6.5 and 6.9
from [12].

3 The concentration-compactness principle

This section deals with a nonlocal version of Lions’ concentration-compactness principle. More particularly, we
provide a proof of relation (8) which relies on some computations performed in [6], and which differs from other
results that can be found in the literature such as [15].

Proposition 3.1 Let {un}n∈N be a bounded sequence in Hs(RN ) with
∫
RN |un|

2 → λ for n → +∞. Then
there exists a subsequence {nk}k∈N such that one of the following three cases occur:

(i) Compactness: there exists {yk}k∈N ⊂ RN such that

∀ε > 0, ∃R < +∞ s.t.
∫
yk+BR

|unk |2 ≥ λ− ε.
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8 E. Parini and A. Salort: Compactness and dichotomy in nonlocal shape optimization

(ii) Vanishing:

lim
k→+∞

sup
y∈RN

∫
y+BR

|unk |2 = 0 ∀R > 0.

(iii) Dichotomy: there exists α ∈ (0, λ), such that for all ε > 0, there exist k0 ∈ N, {vk}k∈N, {wk}k∈N ⊂
Hs(RN ) such that, for k ≥ k0:

‖unk − vk − wk‖L2(RN ) ≤ δ(ε)→ 0 for ε→ 0;∣∣∣∣ ∫
RN
|vk|2 − α

∣∣∣∣ ≤ ε, ∣∣∣∣ ∫
RN
|wk|2 − (λ− α)

∣∣∣∣ ≤ ε;
dist(supp vk, suppwk)→ +∞ for k → +∞;

[unk ]2Hs(RN ) − [vk]2Hs(RN ) − [wk]2Hs(RN ) ≥ −2ε. (8)

P r o o f. All the assertions of this theorem, with exception of (8), follow from the classical concentration-
compactness lemma [21, Lemma I.1]. To prove (8), we suitably modify [21, Lemma III.1]. Let ε > 0, and let
R0 > 0 be chosen as in [21, Lemma III.1]. Let us define two cut-off functions ϕ,ψ ∈ C∞(RN ) satisfying
0 ≤ ϕ, ψ ≤ 1, ϕ ≡ 1 on B1, ϕ ≡ 0 on RN \ B2 and ψ ≡ 0 on B1, ψ ≡ 1 on RN \ B2. Denote by ϕR, ψR the
functions defined by

ϕR(x) := ϕ
( x
R

)
, ψR(x) := ψ

( x
R

)
. (9)

For any function u ∈ Hs(RN ) with [u]Hs(RN ) ≤M we have∫
RN

∫
RN

|ϕR(x)u(x)− ϕR(y)u(y)|2

|x− y|N+2s
dx dy

=

∫
RN

∫
RN

|ϕR(x)u(x) + ϕR(x)u(y)− ϕR(x)u(y)− ϕR(y)u(y)|2

|x− y|N+2s
dx dy

=

∫
RN

∫
RN
|ϕR(x)|2 |u(x)− u(y)|2

|x− y|N+2s
dx dy +

∫
RN

∫
RN
|u(y)|2 |ϕR(x)− ϕR(y)|2

|x− y|N+2s
dx dy

+ 2

∫
RN

∫
RN

ϕR(x)u(y)[ϕR(x)− ϕR(y)][u(x)− u(y)]

|x− y|N+2s
dx dy.

By the computations in [6, Lemma A.2], it is possible to estimate∫
RN

∫
RN
|u(y)|2 |ϕR(x)− ϕR(y)|2

|x− y|N+2s
dx dy ≤ C

R2s
,

where C only depends on ‖∇ϕ‖∞ and ‖u‖L2(RN ). Moreover, the Cauchy-Schwarz inequality together with the
last inequality gives that∫

RN

∫
RN

ϕR(x)u(y)[ϕR(x)− ϕR(y)][u(x)− u(y)]

|x− y|N+2s
dx dy

≤
(∫

RN

∫
RN

|u(y)|2|ϕR(x)− ϕR(y)|2

|x− y|N+2s
dx dy

) 1
2
(∫

RN

∫
RN

|ϕR(x)|2|u(x)− u(y)|2

|x− y|N+2s
dx dy

) 1
2

≤
(∫

RN

∫
RN

|u(y)|2|ϕR(x)− ϕR(y)|2

|x− y|N+2s
dx dy

) 1
2
(∫

RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy

) 1
2

≤ C

Rs
,
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where C only depends on ‖∇ϕ‖∞, ‖u‖L2(RN ), and [u]Hs(RN ).
Similar computations hold true for the quantity∫

RN

∫
RN

|ψR(x)u(x)− ψR(y)u(y)|2

|x− y|N+2s
dx dy.

Therefore it is possible to choose R1 ≥ R0 such that, for R ≥ R1, and for every n ∈ N,∣∣∣∣ ∫
RN

∫
RN

|ϕR(x)un(x)− ϕR(y)un(y)|2

|x− y|N+2s
dx dy−

∫
RN

∫
RN

|ϕR(x)|2|un(x)− un(y)|2

|x− y|N+2s
dx dy

∣∣∣∣ ≤ ε,
∣∣∣∣ ∫

RN

∫
RN

|ψR(x)un(x)− ψR(y)un(y)|2

|x− y|N+2s
dx dy−

∫
RN

∫
RN

|ψR(x)|2|un(x)− un(y)|2

|x− y|N+2s
dx dy

∣∣∣∣ ≤ ε.
The claim follows defining

vk(x) = ϕR1(x− yk)unk(x), wk(x) = ψRk(x− yk)unk(x),

where yk and Rk → +∞ are defined as in [21, pp 136-137] and observing that∫
RN

∫
RN

|unk(x)− unk(y)|2

|x− y|N+2s
dx dy

≥
∫
RN

∫
RN

|ϕR1(x)|2|unk(x)− unk(y)|2

|x− y|N+2s
dx dy +

∫
RN

∫
RN

|ψRk(x)|2|unk(x)− unk(y)|2

|x− y|N+2s
dx dy

since ϕR1
and ψRk have disjoint support for k big enough, and therefore

|ϕR1
(x)|2 + |ψRk(x)|2 ≤ 1 for every x ∈ RN .

Corollary 3.2 In the dichotomy case, it is possible to find sequences {u(1)
k }k∈N, {u(2)

k }k∈N ⊂ Hs(RN ) such
that

‖unk − u
(1)
k − u

(2)
k ‖L2(RN ) → 0 for k → +∞;∫

RN
|u(1)
k |

2 → α,

∫
RN
|u(2)
k |

2 → λ− α for k → +∞;

dist(suppu(1)
k , suppu(2)

k )→ +∞ for k → +∞;

lim inf
k→+∞

(
[unk ]2Hs(RN ) − [u

(1)
k ]2Hs(RN ) − [u

(2)
k ]2Hs(RN )

)
≥ 0. (10)

4 γ-convergence of sets

In this section we introduce the notions of γ-convergence and weak γ-convergence of sets, and we prove some
useful results leading to our main theorem.

4.1 Convergence of sets

In this subsection we prove that a functional J defined inA(RN ) which is l.s.c. with respect to the γ-convergence
is also l.s.c. with respect to the weak γ-convergence if it is assumed to be decreasing with respect to the inclusion
of sets.
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10 E. Parini and A. Salort: Compactness and dichotomy in nonlocal shape optimization

Definition 4.1 Let {Ωn}n∈N be a sequence of s-quasi-open sets such that |Ωn| ≤ c for every n ∈ N. We say
that {Ωn}n∈N γ-converges to the s-quasi-open set Ω if the solutions wΩn ∈ Hs

0(Ωn) of the problems{
(−∆)swΩn = 1 in Ωn,

wΩn = 0 in RN \ Ωn,
(11)

strongly converge in L2(RN ) to the solution wΩ ∈ Hs
0(Ω) of the problem{

(−∆)swΩ = 1 in Ω,
wΩ = 0 in RN \ Ω.

Definition 4.2 Let {Ωn}n∈N be a sequence of s-quasi-open sets. We say that {Ωn}n∈N weakly γ-converges
to the s-quasi-open set Ω if the solutions wΩn ∈ Hs

0(Ωn) of the problems{
(−∆)swΩn = 1 in Ωn,

wΩn = 0 in RN \ Ωn,
(12)

converge weakly in Hs(RN ), and strongly in L2(RN ), to a function w ∈ Hs(RN ) such that Ω = {w > 0}.
Proposition 4.3 Let {Ωn}n∈N be a sequence of s-quasi-open sets of uniformly bounded measure which γ-

converges to the s-quasi-open set Ω. Then {Ωn}n∈N weakly γ-converges to Ω.

P r o o f. By definition of γ-convergence, wΩn → wΩ in L2(RN ). By Proposition 2.8, Ω = {wΩ > 0} s-q.e.,
which means that {Ωn}n∈N weakly γ-converges to Ω.

Proposition 4.4 Let {Ωn}n∈N be a sequence of s-quasi-open sets of uniformly bounded measure, which
weakly γ-converges to the s-quasi-open set Ω. Then,

|Ω| ≤ lim inf
n→+∞

|Ωn|.

P r o o f. Letm := lim infn→+∞ |Ωn|. Up to extracting a subsequence, we can suppose thatm = limn→+∞ |Ωn|.
Let wΩn ∈ Hs

0(Ωn) be the sequence of torsion functions defined in (12). Since wΩn → w strongly in L2(RN ),
there exists a subsequence wΩnk

such that wΩnk
converges almost everywhere in RN to w. Since Ω = {w > 0},

it holds χΩ ≤ lim infk→+∞ χΩnk
almost everywhere in RN . By Fatou’s Lemma,

|Ω| =
∫
RN

χΩ ≤ lim inf
k→+∞

∫
RN

χΩnk
= m

as required.

Remark 4.5 We observe that, if {Ωn}n∈N are s-quasi-open sets, with |Ωn| ≤ c, which γ-converge to Ω, then
wΩn → wΩ strongly in Hs(RN ). Indeed, by Propositions 4.3 and 4.4, one has |Ω| ≤ c. Therefore∫

Ωn

wΩn −
∫

Ω

wΩ ≤
∫

Ωn\Ω
wΩn +

∫
Ωn∩Ω

|wΩn − wΩ|+
∫

Ω\Ωn
wΩ

≤
∫

Ωn∪Ω

|wΩn − wΩ| ≤ (2c)
1
2 ‖wΩn − wΩ‖L2(RN )

and therefore

lim
n→+∞

∫
Ωn

wΩn =

∫
Ω

wΩ.

Passing to the limit in the weak formulation, we obtain

[wΩn ]2Hs(RN ) =

∫
Ωn

wΩn →
∫

Ω

wΩ = [wΩ]2Hs(RN )

and therefore, by reflexivity of Hs(RN ), wΩn → wΩ strongly in Hs(RN ).
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Lemma 4.6 Suppose that {Ωn}n∈N is a sequence of s-quasi-open sets of uniformly bounded measure which
weakly γ-converges to the s-quasi-open set Ω. Let {un}n∈N be a sequence of functions in Hs(RN ) such that
un ∈ Hs

0(Ωn) for every n ∈ N, and un ⇀ u weakly in Hs(RN ). Then, u ∈ Hs
0(Ω).

P r o o f. The proof can be performed as in [18, Lemma 4.7.10]. Let w ∈ Hs(RN ) be such that wΩn converge
to w weakly in Hs(RN ), and strongly in L2(RN ). Since it is enough to show that ũ := min{|u|, k} ∈ Hs

0(Ω)
for every k > 0, and ũ is the weak limit of ũn := min{|un|, k} ∈ Hs

0(Ωn), we may assume that the functions
un are nonnegative, and such that ‖un‖L∞ is uniformly bounded by a constant k > 0. For fixed λ > 0, let vλn be
the weak solution of{

λ(−∆)svλn + vλn = un in Ωn,
vλn = 0 in RN \ Ωn,

(13)

namely, the function vλn ∈ Hs
0(Ωn) satisfying, for every ϕ ∈ Hs

0(Ωn),

λ

∫
RN

∫
RN

(vλn(x)− vλn(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dx dy +

∫
Ω

vλnϕ =

∫
Ω

unϕ.

By the weak maximum principle given in Proposition 2.4, vλn ≥ 0. Choosing ϕ = vλn − un, we obtain

λ

∫
RN

∫
RN

|(vλn − un)(x)− (vλn − un)(y)|2

|x− y|N+2s
dx dy +

∫
RN
|vλn − un|2 (14)

= −λ
∫
RN

∫
RN

[un(x)− un(y)][(vλn − un)(x)− (vλn − un)(y)]

|x− y|N+2s
dx dy

≤ λ

2

∫
RN

∫
RN

|(vλn − un)(x)− (vλn − un)(y)|2

|x− y|N+2s
dx dy +

λ

2

∫
RN

∫
RN

|un(x)− un(y)|2

|x− y|N+2s
dx dy

which implies

λ

2

∫
RN

∫
RN

|(vλn − un)(x)− (vλn − un)(y)|2

|x− y|N+2s
dx dy +

∫
RN
|vλn − un|2

≤ λ

2

∫
RN

∫
RN

|un(x)− un(y)|2

|x− y|N+2s
dx dy

and hence the boundedness of ‖vλn‖Hs(Rn) by a constant C depending only on supn∈N ‖un‖Hs(RN ) in light of
Proposition 2.1. After subtracting k from both sides of (13), and choosing ϕ = (vλn − k)+, we obtain

λ

∫
RN

∫
RN

|(vλn − k)+(x)− (vλn − k)+(y)|2

|x− y|N+2s
dx dy +

∫
RN
|(vλn − k)+|2

≤ λ
∫
{vλn(x)>k}

∫
{vλn(y)>k}

|(vλn − k)+(x)− (vλn − k)+(y)|2

|x− y|N+2s
dx dy

− 2λ

∫
{vλn(x)<k}

∫
{vλn(y)>k}

(vλn − k)(x)(vλn − k)+(y)

|x− y|N+2s
dx dy +

∫
RN
|(vλn − k)+|2

=

∫
RN

(un − k)(vλn − k) ≤ 0

which implies that ‖vλn‖L∞ ≤ k for every n ∈ N and every λ > 0 . Since vλn solves (13), we obtain the bound
0 ≤ vλn ≤ 2k

λ wΩn . If vλ is a weak limit in Hs(RN ) of {vλn}n∈N, we obtain 0 ≤ vλ ≤ 2k
λ w, which implies

that vλ ∈ Hs
0(Ω). From (14) we have ‖vλn − un‖2L2(RN ) ≤ Cλ, which implies ‖vλ − u‖2L2(RN ) ≤ Cλ. Passing

to the limit for λ → 0, we get that vλ → u in L2(RN ); since {vλ}λ>0 is uniformly bounded in Hs(RN ), the
convergence is also weak in Hs(RN ), which lastly implies that u ∈ Hs

0(Ω).

Copyright line will be provided by the publisher



12 E. Parini and A. Salort: Compactness and dichotomy in nonlocal shape optimization

4.2 γ-convergence and continuity of the spectrum

Here we prove that γ-convergence of s-quasi-open sets implies the convergence of their resolvent operators in
the L(L2(RN )) norm. In particular we obtain continuity of the spectrum with respect to the γ-convergence.

Proposition 4.7 Let {Ωn}n∈N be a sequence of s-quasi-open sets of uniformly bounded measure, which γ-
converges to the s-quasi-open set Ω. Let {un}n∈N be a sequence in Hs(RN ) such that un ∈ Hs

0(Ωn) for every
n ∈ N, and un ⇀ u weakly in Hs(RN ). Then, un → u strongly in L2(RN ).

P r o o f. The proof goes as in [7, Theorem 2.1]. Denoting by Fun, Fu the Fourier transforms of un and u
respectively, for R > 0 we have that

‖un − u‖2L2(RN ) =

∫
RN
|Fun(ξ)−Fu(ξ)|2 dξ

=

∫
|ξ|≥R

(1 + |ξ|2s)−1(1 + |ξ|2s)|Fun(ξ)−Fu(ξ)|2 dξ +

∫
|ξ|<R

|Fun(ξ)−Fu(ξ)|2 dξ

≤ Cs,N
1 +R2s

‖un − u‖2Hs(RN ) +

∫
|ξ|<R

|Fun(ξ)−Fu(ξ)|2 dξ,

where the constant Cs,N is the equivalence norm constant given [12, Proposition 3.4]. Let ε > 0 be fixed. Since
{un}n∈N is bounded in Hs(RN ), there exists R > 0 such that, for every n ∈ N,

Cs,N
1 +R2s

‖un − u‖2Hs(RN ) <
ε

2
.

It remains to prove that∫
|ξ|<R

|Fun(ξ)−Fu(ξ)|2 dξ → 0

as n → +∞. For ξ ∈ BR, define the complex-valued function gξ : RN → C as gξ(x) = e2πi〈x,ξ〉. By Proposi-
tion 2.3 applied to the real and imaginary parts of gξ, it holds that ugξ ∈ Hs

0(Ω;C) and ungξ ∈ Hs
0(Ωn;C) for

every n ∈ N, and ungξ ⇀ ugξ weakly in Hs(RN ;C) as n→ +∞.
Let wΩn ∈ Hs

0(Ωn) be the solution of (11). Testing this equation with ungξ, we obtain∫
RN

∫
RN

(wΩn(x)− wΩn(y))(un(x)gξ(x)− un(y)gξ(y))

|x− y|N+2s
dx dy =

∫
RN

un(x)gξ(x) dx.

Letting n→ +∞ and observing that wΩn → wΩ strongly in Hs(RN ) by Remark 4.5, we obtain∫
RN

un(x)gξ(x) dx→
∫
RN

u(x)gξ(x) dx

as n→ +∞. Observing that

Fun(ξ) =

∫
Ωn

un(x)gξ(x) dx

and

Fu(ξ) =

∫
Ω

u(x)gξ(x) dx,

we have |Fun(ξ)−Fu(ξ)| → 0 as n→ +∞. Moreover,

|Fun(ξ)| ≤
∫

Ωn

|un(x)| dx ≤ |Ωn|
1
2 ‖un‖L2(RN ),
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and a similar relation holds forFu. Therefore, Fun andFu are uniformly bounded in L∞. Applying Lebesgue’s
dominated convergence Theorem we get∫

|ξ|<R
|Fun(ξ)−Fu(ξ)|2 dξ → 0

and hence the claim.

Proposition 4.8 Let {Ωn}n∈N be a sequence of s-quasi-open sets such that |Ωn| ≤ c for every n ∈ N.
Suppose that {Ωn}n∈N γ-converges to the s-quasi-open set Ω. Then, for every sequence fn ∈ L2(Ωn) converging
weakly in L2(RN ) to f ∈ L2(Ω), the solutions un ∈ Hs(RN ) of the problems{

(−∆)sun = fn in Ωn,
un = 0 in RN \ Ωn,

strongly converge in L2(RN ) to the solution u ∈ Hs(RN ) of the problem{
(−∆)su = f in Ω,

u = 0 in RN \ Ω.
(15)

P r o o f. The sequence {fn}n∈N is uniformly bounded in L2(RN ). Since |Ωn| ≤ c for every n ∈ N, it
easily follows from Cauchy-Schwarz inequality and Poincaré’s inequality (see Proposition 2.1) that {un}n∈N is
uniformly bounded in Hs(RN ). Let v ∈ Hs(RN ) be a weak limit of a subsequence of {un}n∈N. We will prove
that v = u. Let ϕ ∈ Z(Ω), as defined in Proposition 2.7, a nonnegative function. Let ϕn ∈ Hs

0(Ωn) be defined
as ϕn = min{ϕ,mwΩn}, where m ≥ ‖g‖L∞(RN ) and g = (−∆)sϕ ∈ L∞(RN ). By Remark 4.5, wΩn → wΩ

strongly in Hs(RN ), and therefore ϕn → ϕ strongly in Hs(RN ), since 0 ≤ ϕ ≤ mwΩ. Exploiting the weak
formulation of the equation, we have∫

RN

∫
RN

(un(x)− un(y))(ϕn(x)− ϕn(y))

|x− y|N+2s
dx dy =

∫
Ω

fn(x)ϕn(x) dx.

Passing to the limit as n→ +∞, we obtain∫
RN

∫
RN

(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dx dy =

∫
Ω

f(x)ϕ(x) dx. (16)

and since the functions ϕ ∈ W are dense in Hs
0(Ω), it follows that (16) holds true for every ϕ ∈ Hs

0(Ω), with
ϕ ≥ 0. This means that v is a weak sub- and supersolution, and hence the weak solution, of (15), which implies
v = u. Therefore, the whole sequence {un}n∈N converges weakly in Hs(RN ) to u. Finally, by Proposition 4.7,
un → u strongly in L2(RN ).

Proposition 4.9 Let {Ωn}n∈N be a sequence of s-quasi-open sets such that |Ωn| ≤ c for every n ∈ N.
Suppose that {Ωn}n∈N γ-converges to the s-quasi-open set Ω. Then, the resolvents RΩn converge to RΩ in
L(L2(RN )). In particular, for every k ≥ 1,

λk(Ωn)→ λk(Ω) as n→ +∞.

P r o o f. We have to show that

lim
n→+∞

sup
{
‖RΩn(f)−RΩ(f)‖L2(RN )

∣∣ f ∈ L2(RN ), ‖f‖L2(RN ) ≤ 1
}

= 0.

It is equivalent to prove that, for every sequence {fn}n∈N such that ‖fn‖L2(RN ) = 1, the following limit holds

lim
n→+∞

‖RΩn(fn)−RΩ(fn)‖L2(RN ) = 0.
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14 E. Parini and A. Salort: Compactness and dichotomy in nonlocal shape optimization

Let {fn}n∈N be such a sequence. Without loss of generality, we can suppose that there exists f ∈ L2(RN ) such
that fn ⇀ f in L2(RN ). By the triangular inequality we get

lim sup
n→+∞

‖RΩn(fn)−RΩ(fn)‖L2(RN ) ≤

lim sup
n→+∞

‖RΩn(fn)−RΩ(f)‖L2(RN ) + lim sup
n→+∞

‖RΩ(fn)−RΩ(f)‖L2(RN ).

The first term in the previous inequality is equal to zero by Proposition 4.8, while the second term is also zero
since the injection Hs

0(Ω) → L2(Ω) is compact due to Proposition 2.1. By [13, Corollary XI.9.4], we have, for
every k ≥ 1,∣∣∣∣ 1

λk(Ωn)
− 1

λk(Ω)

∣∣∣∣ ≤ ‖RΩn −RΩ‖L(L2(RN )) (17)

and hence

λk(Ωn)→ λk(Ω) as n→ +∞,

concluding the proof.

Remark 4.10 When Ω = ∅ s-quasi-everywhere, by definition Hs
0(Ω) = {0}, RΩ is the null operator, and

formally λk(Ω) = +∞ for every k ≥ 1. In this case, (17) becomes

0 ≤ 1

λk(Ωn)
≤ ‖RΩn‖L(L2(RN )). (18)

In other words, if Ωn γ-converges to the empty set, then λk(Ωn) → +∞ for every k ≥ 1. Conversely, if Ω is a
s-quasi-open set such that wΩ = 0, then (−∆)swΩ = 0 in Ω, and therefore Ω = ∅ s-quasi-everywhere.

5 Proof of Theorem 1.1

In the following, {Ωn}n∈N will be a sequence of s-quasi-open sets of uniformly bounded measure. The proof
of Theorem 1.1, which will be performed in several steps, is based on the behavior of the sequence {wΩn}n∈N
according to the concentration-compactness principle stated in Proposition 3.1. Without loss of generality, we
can suppose that

∫
RN |wΩn |2 → λ as n→ +∞ for some λ > 0.

5.1 Compactness for wΩn

Assume that {wΩn}n∈N is in the compactness case, that is, up to some subsequence still denoted with the same
index, one can find a sequence {yn}n∈N such that the sequence {wyn+Ωn}n∈N converges strongly in L2(RN ) to
some w ∈ Hs(RN ). Then, by definition, yn + Ωn weakly γ-converges to the set Ω := {w > 0}.

5.2 Vanishing for wΩn

In the spirit of [20] we prove the following lemma.
Lemma 5.1 Let A and B be two measurable sets. Then there exists z ∈ RN such that, if Az = z +A,

λ1(Az ∩B) ≤ 2(λ1(A) + λ1(B)).

P r o o f. Let z ∈ RN be arbitrary and let u and v be positive first eigenfunctions on A and B respectively,
normalized such that ‖u‖L2(A) = ‖v‖L2(B) = 1. By regularity, the function uz defined by uz(x) = u(z − x)
satisfies uz ∈ Hs

0(Az)∩L∞(Az), and v ∈ Hs
0(B)∩L∞(B). The function wz defined as wz(x) = u(x−z)v(x)

belongs to Hs
0(Az ∩B) ∩ L∞(Az ∩B). Define

T (z) := [wz]
2
Hs(RN ) =

∫
RN

∫
RN

|wz(x)− wz(y)|2

|x− y|N+2s
dx dy, D(z) :=

∫
RN
|wz(x)|2 dx.
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It holds that ∫
RN

D(z) dz =

∫
RN

∫
RN
|wz(x)|2 dx dz =

∫
RN

∫
RN
|u(x− z)v(x)|2 dx dz = 1.

Moreover,

|wz(x)− wz(y)|2

= |u(x− z)v(x)− u(y − z)v(y)|2

= |u(x− z)v(x)− u(x− z)v(y) + u(x− z)v(y)− u(y − z)v(y)|2

= |u(x− z)|2|v(x)− v(y)|2 + |v(y)|2|u(x− z)− u(y − z)|2

+ 2u(x− z)v(y)[v(x)− v(y)][u(x− z)− u(y − z)].

Using the elementary inequality 2ab ≤ a2 + b2, the last term in the inequality above can be bounded as

|u(x− z)|2|v(x)− v(y)|2 + |v(y)|2|u(x− z)− u(y − z)|2,

and from the last two expressions we get

|wz(x)− wz(y)|2 ≤ 2
(
|u(x− z)|2|v(x)− v(y)|2 + |v(y)|2|u(x− z)− u(y − z)|2

)
.

Thus

T (z) ≤ 2

∫
RN

∫
RN

|u(x− z)|2|v(x)− v(y)|2

|x− y|N+2s
dx dy + 2

∫
RN

∫
RN

|v(y)|2|u(x− z)− u(y − z)|2

|x− y|N+2s
dx dy.

Then, integrating over z and performing a change of variables, since u and v are normalized in L2 norm, we get∫
RN

T (z) dz ≤ 2(λ1(A) + λ1(B)) := Λ.

Therefore,
∫
RN [T (z) − ΛD(z)] dz ≤ 0, hence 0 ≤ T (z) ≤ ΛD(z) on a set of positive measure. From the

definitions of T , D and Λ the lemma follows.

Assume that {wΩn}n∈N is in the vanishing case, that is, for all R > 0 it holds that

lim
n→+∞

sup
y∈RN

∫
y+BR

|wΩn |2 = 0.

Since the sequence {wΩn}n∈N ⊂ Hs(RN ) is bounded, we can assume that wΩn ⇀ w weakly in Hs(RN ). Fix
ε > 0. By Lemma 5.1, there exists R > 0 and a sequence {yn}n∈N in RN such that

λ1((yn + Ωn) ∩BR) ≤ 2λ1(Ωn) + ε. (19)

From the weak maximum principle (Proposition 2.4) it follows that wyn+Ωn ≥ w(yn+Ωn)∩BR ≥ 0, and then, the
vanishing assumption on wΩn gives that

lim
n→+∞

∫
BR

|w(yn+Ωn)∩BR |
2 = 0.

This means that w(yn+Ωn)∩BR → 0 strongly in L2(RN ), and therefore (yn + Ωn) ∩ BR γ−converges to the
empty set. By Remark 4.10,

λ1((yn + Ωn) ∩BR)→ +∞ as n→ +∞.

By (19) we obtain that
λ1(Ωn)→ +∞ as n→ +∞.

From the Poincaré inequality given in Proposition 2.1 we find that

‖wΩn‖L2(Ωn) ≤
1

λ1(Ωn)
[wΩn ]Hs(RN ) → 0 as n→ +∞

since {wΩn}n∈N is bounded inHs(RN ). Finally, by Proposition 4.9 and Remark 4.10 we obtain that ‖RΩn‖L(L2(RN )) →
0. By definition, the sequence {Ωn}n∈N γ-converges, and hence weakly γ-converges, to the empty set.
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16 E. Parini and A. Salort: Compactness and dichotomy in nonlocal shape optimization

5.3 Dichotomy for wΩn

Finally, suppose that wΩn is in the dichotomy case. That means that it is possible to find two sequences {un}n∈N
and {vn}n∈N of functions in Hs

0(Ωn) and a number α ∈ (0, λ) such that, up to a subsequence,

‖wΩn − un − vn‖L2(RN ) → 0 as n→ +∞;∫
RN

u2
n → α,

∫
RN

v2
n → λ− α for n→ +∞;

dist(suppun, supp vn)→ +∞ for n→ +∞;

lim inf
n→+∞

(
[wΩn ]2Hs(RN ) − [un]2Hs(RN ) − [vn]2Hs(RN )

)
≥ 0. (20)

Looking at the proof of Proposition 3.1, we observe that by construction the functions un and vn are nonnegative,
since wΩn is nonnegative by the weak maximum principle. We define the following sets

Ω1
n := {un > 0}, Ω2

n := {vn > 0}, Ω̃n := Ω1
n ∪ Ω2

n, (21)

and then Ω̃n is a s-quasi-open set contained in Ωn.
The proof of the claims in the dichotomy case will be a consequence of the following results.

Lemma 5.2 The sequence of sets (21) satisfies

lim inf
n→+∞

|Ωin| > 0 for i = 1, 2.

P r o o f. Suppose by contradiction that, for instance, lim infn→+∞ |Ω1
n| = 0. The functions wΩn are uni-

formly bounded in L∞ by [5, Theorem 3.1], and therefore, by construction, also the functions un are uniformly
bounded in L∞. But then,

∫
RN u

2
n → 0, which contradicts the fact that

∫
RN u

2
n → α > 0.

Lemma 5.3 With the previous notation, we have that

‖wΩn − wΩ̃n
‖Hs(RN ) → 0 as n→ +∞.

P r o o f. We observe that wΩ̃n
is the orthogonal projection of wΩn on the space Hs

0(Ω̃n). Indeed, let us
consider the functional F : Hs

0(Ω̃n)→ R defined by

F (v) =
1

2
[wΩn − v]2Hs(RN ).

Observe that

F (v) =
1

2
[wΩn ]2Hs(RN ) +

1

2
[v]2Hs(RN ) −

∫
RN

∫
RN

(wΩn(x)− wΩn(y))(v(x)− v(y))

|x− y|N+2s
dxdy.

Using the weak formulation of wΩn we have that

F (v) =
1

2
[wΩn ]2Hs(RN ) +

1

2
[v]2Hs(RN ) −

∫
Ω̃n

v.

Then, the functional F will be minimized for v = wΩ̃n
, since wΩ̃n

minimizes the functional

v 7→ 1

2
[v]2Hs(RN ) −

∫
Ω̃n

v.
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Hence, ∫
RN

∫
RN

|wΩn(x)− wΩn(y)− wΩ̃n
(x) + wΩ̃n

(y)|2

|x− y|N+2s
dx dy

≤
∫
RN

∫
RN

|wΩn(x)− wΩn(y)− (un + vn)(x) + (un + vn)(y))|2

|x− y|N+2s
dx dy

= [wΩn ]2Hs(RN ) + [un + vn]2Hs(RN )

− 2

∫
RN

∫
RN

[wΩn(x)− wΩn(y)][(un + vn)(x)− (un + vn)(y)]

|x− y|N+2s
dx dy

=

∫
RN

wΩn + [un + vn]2Hs(RN ) − 2

∫
RN

(un + vn)

= 2

(∫
RN

wΩn −
∫
RN

(un + vn)

)
+ [un + vn]2Hs(RN ) − [wΩn ]2Hs(RN ).

Observe that∣∣∣∣ ∫
RN

wΩn −
∫
RN

(un + vn)

∣∣∣∣ ≤ |Ωn| 12 ‖wΩn − (un + vn)‖L2(RN ) → 0

as n → +∞. Moreover, using the fact that [un + vn]2Hs(RN ) ≤ [un]2Hs(RN ) + [vn]2Hs(RN ) since they are
nonnegative functions, we obtain from (20) that

lim sup
n→+∞

(
[un + vn]2Hs(RN ) − [wΩn ]2Hs(RN )

)
≤ 0

and therefore

[wΩn − wΩ̃n
]Hs(RN ) → 0 as n→ +∞.

By Proposition 2.1, there exists C > 0 such that, for every n ∈ N,

‖wΩn − wΩ̃n
‖L2(RN ) = ‖wΩn − wΩ̃n

‖L2(Ωn) ≤ C[wΩn − wΩ̃n
]Hs(RN )

and hence

‖wΩn − wΩ̃n
‖Hs(RN ) → 0 as n→ +∞.

Lemma 5.4 Let {Ωn}n∈N be a sequence of s-quasi-open sets of uniformly bounded measure, such that

Ωn = Ω(1)
n ∪ Ω(2)

n , dist(Ω(1)
n ,Ω(2)

n )→ +∞ as n→ +∞.

Then,

‖wΩn − (w
Ω

(1)
n

+ w
Ω

(2)
n

)‖Hs(RN ) → 0 as n→ +∞.

P r o o f. We observe that, by [11, Theorem 1], wΩn and w
Ω

(1)
n

are uniformly bounded in L∞. Moreover, wΩn

satisfies {
(−∆)swΩn = 1 in Ω

(1)
n ,

wΩn = gn in RN \ Ω
(1)
n ,

(22)

where gn coincides with wΩn on Ω
(2)
n , and is equal to zero in RN \ Ω

(2)
n . The function zn := wΩn − wΩ

(1)
n

satisfies {
(−∆)szn = 0 in Ω

(1)
n ,

zn = gn in RN \ Ω
(1)
n .

(23)
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18 E. Parini and A. Salort: Compactness and dichotomy in nonlocal shape optimization

Let ŵn be the function which coincides with wΩn on Ω
(1)
n , and is equal to zero in RN \Ω

(1)
n . By testing (23) with

ϕn = ŵn − wΩ
(1)
n
∈ Hs

0(Ω
(1)
n ), and observing that zn = ϕn + gn, we obtain

0 =

∫
RN

∫
RN

(zn(x)− zn(y))(ϕn(x)− ϕn(y))

|x− y|N+2s
dx dy

=

∫
RN

∫
RN

|ϕn(x)− ϕn(y)|2

|x− y|N+2s
dx dy +

∫
RN

∫
RN

(ϕn(x)− ϕn(y))(gn(x)− gn(y))

|x− y|N+2s
dx dy.

It holds ∣∣∣∣ ∫
RN

∫
RN

(ϕn(x)− ϕn(y))(gn(x)− gn(y))

|x− y|N+2s
dx dy

∣∣∣∣
= 2

∣∣∣∣ ∫
Ω

(1)
n

∫
Ω

(2)
n

ϕn(x)gn(y)

|x− y|N+2s
dx dy

∣∣∣∣ ≤ Cdist(Ω(1)
n ,Ω(2)

n )−N−2s → 0

as n→ +∞. This implies

[ŵn − wΩ
(1)
n

]Hs(RN ) → 0 as n→ +∞.

This reasoning can be repeated for the sets Ω
(2)
n . Finally, by the triangle inequality, and Poincaré’s inequality,

‖wΩn − (w
Ω

(1)
n

+ w
Ω

(2)
n

)‖Hs(RN ) → 0 as n→ +∞.

Lemma 5.5 Let Ω̃ ⊂ Ω ⊂ RN two sets of finite measure. There exists a constant C = C(|Ω|, N) > 0 and
α = α(N, s) > 0 such that

‖RΩ −RΩ̃‖L(L2(RN )) ≤ C‖wΩ − wΩ̃‖
α
L2(RN ).

P r o o f. Let 0 < s < 1 be fixed. Observe that if u, v ∈ H1
0 (Ω) are the unique solutions of (−∆)su = f in

Ω, (−∆)sv = 1 in Ω, respectively, using v and u as test functions in the weak formulation of the two previous
equations, respectively, we get∫

RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy =

∫
Ω

fw =

∫
Ω

u,

that is,
∫

Ω
fwΩ =

∫
Ω
R(f). The previous computation gives that∫

Ω

RΩ(f)−RΩ̃(f) =

∫
Ω

f(wΩ − wΩ̃).

By [5, Theorem 3.1], for N < 4s we have

‖RΩ(f)‖L∞(Ω) ≤ C(N, |Ω|)‖f‖L2(Ω), (24)

and then, by using (24) and Hölder’s inequality we get

‖RΩ(f)−RΩ̃(f)‖2L2(Ω) ≤ ‖RΩ(f)−RΩ̃(f)‖L∞(Ω)‖RΩ(f)−RΩ̃(f)‖L1(Ω)

≤ C‖f‖L2(Ω)‖f(wΩ − wΩ̃)‖L1(Ω)

≤ C‖f‖2L2(Ω)‖wΩ − wΩ̃‖L2(Ω).

The case N ≥ 4s will follow by an interpolation argument. For that end, consider p > 2, N ≥ 4s and
f ∈ Lp(Ω), f ≥ 0. By using again [5, Theorem 3.1] and Hölder’s inequality we get

‖RΩ(f)−RΩ̃(f)‖Lp(Ω) ≤ C‖f‖Lp(Ω)‖wΩ − wΩ̃‖
1
p

Lp′ (Ω)
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for a suitable constant C depending only on p, N and |Ω|, that is,

‖RΩ −RΩ̃‖L(Lp(RN )) ≤ C‖wΩ − wΩ̃‖
1
p

Lp′ (Ω)
.

Now, let R∗Ω and R∗
Ω̃

be the adjoint operators of RΩ and ΩΩ̃, respectively, which are defined from Lp
′
(Ω) in

itself. Since the Lp
′

norm of R∗Ω −R∗Ω̃ coincides with the Lp norm of RΩ −RΩ̃, we get

‖R∗Ω −R∗Ω̃‖L(Lp′ (RN )) ≤ C‖wΩ − wΩ̃‖
1
p

Lp′ (Ω)
.

Since RΩ and RΩ̃ are self-adjoint on L2(Ω), keeping the same notation for RA, RΩ̃ and their extension on
Lp
′
(Ω), we obtain that RΩ −RΩ̃ : Lp

′
(Ω)→ Lp

′
(Ω) and

‖RΩ −RΩ̃‖L(Lp′ (RN )) ≤ C‖wΩ − wΩ̃‖
1
p

Lp′ (Ω)
.

Finally, from the Riesz-Thorin interpolation theorem and since 1 < p′ < 2, we obtain that

‖RΩ −RΩ̃‖L(L2(RN )) ≤ ‖RΩ −RΩ̃‖
1
2

L(Lp(RN ))
‖RΩ −RΩ̃‖

1
2

L(Lp′ (RN ))

≤ C‖wΩ − wΩ̃‖
1
p

Lp′ (Ω)

≤ C|Ω|
2−p′
p′p ‖wΩ − wΩ̃‖

1
p

L2(Ω)

which ends the proof.

6 Proof of Theorem 1.2

Lemma 6.1 Let {Ωn}n∈N be a sequence of s-quasi-open sets of uniformly bounded measure, which weakly
γ-converges to the s-quasi-open set Ω. Then, there exists an increasing sequence of positive integers {nk}k∈N
and a sequence of s-quasi-open sets {Ck}k∈N such that Ωnk ⊂ Ck for every k ∈ N, and {Ck}k∈N γ-converges
to Ω.

P r o o f. The proof can be performed by following the ideas of [18, Lemma 4.7.11]. By definition of weak γ-
convergence, the torsion functions wΩn converge in L2(RN ) to a function w ∈ Hs(RN ) such that Ω = {w > 0}.
For ε > 0, we introduce the s-quasi-open sets Ωε := {wΩ > ε} and Ωεn := Ωn ∪ Ωε. We can suppose that ε is
sufficiently small so that Ωε is not empty. The sequence {wΩεn}n∈N is uniformly bounded in Hs(RN ), so that we
can suppose that it converges weakly in Hs(RN ) to a function wε ∈ Hs(RN ). By the weak maximum principle,
wΩεn

≥ wΩn and wΩεn
≥ wΩε for every n ∈ N. Let us apply the concentration-compactness principle to the

sequence {wΩεn
}n∈N. The inequalitywΩεn

≥ wΩε implies that the sequence can not have vanishing subsequences.
On the other hand, suppose that the sequence admits a subsequence (not relabeled) in the dichotomy case. We
can suppose that ‖wΩεn

‖L2(RN ) → λ for some λ > 0. Then, there exists α ∈ (0, λ), and two sequences {un}n∈N,
{vn}n∈N ⊂ Hs(RN ) such that

‖wΩεn − un − vn‖L2(RN ) → 0 for n→ +∞;∣∣∣∣ ∫
RN
|un|2 − α

∣∣∣∣→ 0,

∣∣∣∣ ∫
RN
|vn|2 − (λ− α)

∣∣∣∣→ 0;

dist(suppun, supp vn)→ +∞ for n→ +∞.

Set An := suppun and Bn := supp vn. We have An, Bn ⊂ Ωn ∪Ωε. Arguing as in Lemma 5.2, we observe that

lim inf
n→+∞

|An| > 0, lim inf
n→+∞

|Bn| > 0.
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By Proposition A.1, Ωε is a bounded set, therefore the relation

An ∩ Ωε 6= ∅ and Bn ∩ Ωε 6= ∅

can hold true only for a finite number of indices n. Without loss of generality, suppose An ⊂ Ωn for every n.
By Lemma 5.4, Lemma 5.3 and the inequality wAn ≤ wΩn , we would have a contradiction with the fact that
wΩn → w in L2(RN ). Therefore, wΩεn

→ wε in L2(RN ). We are going to prove the inequalities

(wΩ − ε)+ ≤ wε ≤ wΩ. (25)

Indeed, since Ωε ⊂ Ωεn, by the weak maximum principle we have

wΩεn
≥ wΩε = (wΩ − ε)+.

On the other hand, define vε := 1
ε (ε − wΩ)+ and vn := inf{wΩεn

, vε}. By definition, vn ∈ Hs
0(Ωn), and vn

converges weakly in Hs(RN ) to v := inf{wε, vε}. By Lemma 4.6, v ∈ Hs
0(Ω). Since vε = 1 on RN \ Ω, it

must hold wε ∈ Hs
0(Ω). Since (−∆)swΩεn ≤ 1 in weak sense in Ω by Proposition 2.5, we have (−∆)swε ≤ 1

in Ω, and therefore, by the weak maximum principle, wε ≤ wΩ in Ω.
Inequality (25) now implies that the functions wε converge, as ε→ 0+, to wΩ weakly in Hs

0(Ω) and strongly
in L2(Ω). Given a sequence εk → 0+, we can find a subsequence nk such that wεknk converges to wΩ weakly in
Hs(RN ) and strongly in L2(RN ). Therefore, Ck := Ωεknk γ-converges to Ω.

Proposition 6.2 Let J : A(RN )→ (−∞,+∞] be a functional satisfying:

(i) J is decreasing with respect to the inclusion of sets;

(ii) J is lower semicontinuous with respect to the γ-convergence.

Then J is lower semicontinuous with respect to the weak γ-convergence.

P r o o f. Let {Ωn}n∈N be a sequence of s-quasi-open sets of uniformly bounded measure, which weakly γ-
converges to the s-quasi-open set Ω. By Lemma 6.1, there exists an increasing sequence of positive integers
{nk}k∈N and a sequence of s-quasi-open sets {Ck}k∈N such that

lim
n→+∞

J(Ωnk) = lim inf
n→+∞

J(Ωn),

Ωnk ⊂ Ck for every k ∈ N, and {Ck}k∈N γ-converges to Ω. Since J is decreasing with respect to the inclusion
of sets,

J(Ω) ≤ lim inf
k→+∞

J(Ck) ≤ lim inf
k→+∞

J(Ωnk) = lim inf
n→+∞

J(Ωn).

The proof is concluded.

We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let {Ωn}n∈N ⊂ A(RN ) be a minimizing sequence for Problem (3), satisfying |Ωn| =
c for every n ∈ N, and J(Ωn)→ m as n→ +∞. By Theorem 1.1, we have two possible cases:

(i) there exists a subsequence, still denoted by {Ωn}n∈N, and a set Ω ∈ A(RN ), such that, up to some transla-
tions, {Ωn}n∈N weakly γ-converges to Ω. Since J is invariant by translations, the sequence will be again a
minimizing sequence for J . By Proposition 4.4, |Ω| ≤ c. Let Ω̂ ∈ A(RN ) be such that Ω ⊂ Ω̂ and |Ω̂| = c.
Since J is decreasing with respect to set inclusion, and by Propositions 4.9 and 6.2,

m ≤ J(Ω̂) ≤ J(Ω) ≤ lim inf
n→+∞

J(Ωn) = m.

Therefore, Ω̂ is a minimizing set.

(ii) there exists a subsequence, still denoted by {Ωn}n∈N, such that we can define Ω̃n = Ω1
n ∪ Ω2

n ⊂ Ωn,
where Ω1

n, Ω2
n are such that dist(Ω1

n,Ω
2
n) → +∞, lim infn→+∞ |Ωin| > 0 for i = 1, 2, and J(Ω̃n) → m

as n → +∞. If |Ω̃n| < c, it is possible to modify suitably the sequence in order to respect the volume
constraint as well, since the functional J is decreasing with respect to set inclusion.
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A A decay estimate for the torsion function

In this appendix we prove a useful estimate for the torsion function in s-quasi open sets of finite measure, in the
spirit of [3, Lemma 5.1] (see also [9, Theorem 3.1]).

Proposition A.1 Let wΩ be the torsion function on a s-quasi open set of finite measure. Then there exists a
constant C, depending only on s, N and |Ω|, such that

‖wΩ‖L∞(Ω\BR+1) ≤ C|Ω \BR|
s
N .

P r o o f. Let wΩ be the torsion function on Ω. By [11, Theorem 1], we have

‖wΩ‖L∞(Ω) ≤ ‖wΩ∗‖L∞(Ω∗),

where Ω∗ is the ball having the same Lebesgue measure as Ω. From [14, Table 3],

wΩ∗(x) = C(r2 − |x|2)s+,

where C = C(s,N) and |Ω| = |Ω∗| = Nωnr
N , so that ‖wΩ∗‖L∞(Ω∗) ≤ C = C(s,N, |Ω|). Set Rk :=

R+ 1− 2−k. Let ϕk ∈W 1,∞(RN ) be a radial cutoff function, such that ϕk ≡ 1 on BcRk , ϕk ≡ 0 on BRk−1
and

|∇ϕ| ≤ 2k in BRk \BRk−1
. We set

tk := M |Ω \BR|s/N (1− 2−k),

where the constant M > 0 will be determined later. The function v = ϕ2
k(wΩ − tk)+ belongs to Hs

0(Ω)
by [6, Lemma A.1] By notational simplicity, we write wk := (wΩ − tk)+. We have

∫
RN

∫
RN

|ϕk(x)wk(x)− ϕk(y)wk(y)|2

|x− y|N+2s
dx dy

=

∫
RN

∫
RN

(wk(x)− wk(y))(ϕ2
k(x)wk(x)− ϕ2

k(y)wk(y))

|x− y|N+2s
dx dy

+

∫
RN

∫
RN

|ϕk(x)− ϕk(y)|2wk(x)wk(y)

|x− y|N+2s
dx dy

≤
∫
RN

∫
RN

(wΩ(x)− wΩ(y))(ϕ2
k(x)wk(x)− ϕ2

k(y)wk(y))

|x− y|N+2s
dx dy

+

∫
RN

∫
RN

|ϕk(x)− ϕk(y)|2wk(x)wk(y)

|x− y|N+2s
dx dy

=

∫
Ω

ϕ2
kwk +

∫
RN

∫
RN

|ϕk(x)− ϕk(y)|2wk(x)wk(y)

|x− y|N+2s
dx dy

=

∫
Ω

ϕ2
kwk +

∫
Ω

∫
Ω

|ϕk(x)− ϕk(y)|2wk(x)wk(y)

|x− y|N+2s
dx dy

=

∫
Ω

ϕ2
kwk +

∫
Ω\BRk−1

∫
Ω\BRk−1

|ϕk(x)− ϕk(y)|2wk(x)wk(y)

|x− y|N+2s
dx dy

+ 2

∫
Ω∩BRk−1

∫
Ω\BRk−1

|ϕk(x)− ϕk(y)|2wk(x)wk(y)

|x− y|N+2s
dx dy

≤
∫

Ω

ϕ2
kwk + 4kC

∫
Ω\BRk−1

wk(x)

(∫
Ω\BRk−1

1

|x− y|N+2s−2
dy

)
dx

+ 2 · 4kC
∫

Ω\BRk−1

wk(x)

(∫
Ω∩BRk−1

1

|x− y|N+2s−2
dy

)
dx

≤
∫

Ω

ϕ2
kwk + 2 · 4kC

∫
Ω\BRk−1

wk(x)

(∫
Ω

1

|x− y|N+2s−2
dy

)
dx.
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Since Ω has finite measure, the quantity∫
Ω

1

|x− y|N+2s−2
dy

is finite for every x, and uniformly bounded from above, from instance by∫
Ω

1

|x− y|N+2s−2
dy =

∫
Ω∩B1(x)

1

|x− y|N+2s−2
dy+

∫
Ω\B1(x)

1

|x− y|N+2s−2
dy ≤ NωN

2− 2s
+ |Ω|.

By Proposition 2.1, we obtain∫
Ω

(ϕkwk)2 ≤ C |{ϕkwk > 0}| 2sN
∫
RN

∫
RN

|ϕk(x)wk(x)− ϕk(y)wk(y)|2

|x− y|N+2s
dx dy

≤ C · 4k |{ϕkwk > 0}| 2sN
(∫

Ω

ϕ2
kwk +

∫
Ω\BRk−1

wk

)
≤ C · 4k |{ϕkwk > 0}|1+ 2s

N .

Arguing as in [3, Lemma 5.1], we obtain the recursive relation

ak+1 ≤
C

M2
16ka

1+ 2s
N

k for every k ≥ 1,

where

ak =
|{(wΩ − tk)+ > 0} ∩ (Ω \BRk−1

)|
|Ω \BR|

.

Choosing M such that C
M2 = 16−

N
s , one can prove by induction that

ak ≤
(

1

16

) N
2s (k−1)

,

which implies ak → 0 as k → +∞. Therefore,

|{(wΩ − t∞)+ > 0} ∩ (Ω \BR)| = 0,

where t∞ = M |Ω \BR|
s
N = C

1
2 4

N
s |Ω \BR|

s
N . This proves the claim.
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